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Instruction Manual

These lecture notes are based on the textbooks [7, 8, 10�12, 15, 16] as well as the ency-
clopaedic [6]. The lecture notes [17,19,20] have also been instrumental. Finally, the three
further textbooks [1, 13, 14] should be mentioned, as they each contain some particularly
nice presentations of particular topics. Moreover, these notes harbour many scattered
ideas and, undoubtedly, numerous typographical (and by all likelihood also some math-
ematical) errors introduced by the author. Moreovering the moreover, many interesting
and sometimes crucial facts have been left as exercises. On a �rst reading, most of them
can be assumed as blackboxes or ignored altogether, but they are of course crucial for a
deeper understanding. The unsure or otherwise confused reader should thus not be afraid
to reach out to discuss. The main goal of these notes is to provide a gentle introduction
to locally convex analysis for the working di�erential geometer, while also ultimately cov-
ering some advanced topics regarding tensor products and the arcane notion of nuclearity.
As such, we assume a certain familiarity with notions from point set topology, but stay on
the lighter side regarding functional analysis. Finally, the author's background results in
a general philosophy of reducing problems to inequalities, whereas the puristic topological
point of view takes a secondary role.

If you are still here: Why are you reading the instruction manual? What kind of dodgy lecture notes require a manual

anyway? Who sold you these? Be careful out there. There are analysts about. One anyway.
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1 Beyond Normed Spaces

Throughout the text, the principal assumption is that we are working with vector spaces
over the �eld C of complex numbers. Accordingly, linear mappings are complex linear and
most mappings take values in the complex numbers. The real theory is largely analogous,
and we indicate whenever it is not.

While normed spaces provide a fruitful and vast framework, they turn out to be insu�cient
to capture a number of natural phenomenona within Di�erential Geometry and Analysis.
In this preliminary section, we explore several such examples.

Example 1.1 LetK ⊆ Cn be compact. Then we may endow the space of complex-valued
continuous functions

C(K) :=
{
f : K −→ C

∣∣ f is continuous
}

with the supremum norm
∥f∥K := max

z∈K

∣∣f(z)∣∣ (1.1)

to obtain a Banach space. The corresponding topology of uniform convergence may be
de�ned by taking the collection of open balls

Br(f) :=
{
g ∈ C(K) : ∥f − g∥K < r

}
with r > 0 as a topological basis. That is to say, a subset U ⊆ C(K) is open i� it may
be written as a union of open balls. The compactness of K is used to ensure that the
maximum within (1.1) is well de�ned. Hence, it is a natural question how one should go
about topologizing

C(U) :=
{
f : U −→ C

∣∣ f is continuous
}

for, say open, subsets U ⊆ C
n. Two natural wishes are the continuity of the restriction

mappings

·
∣∣∣
K
: C(U) −→ C(K) (1.2)

for any compact set K ⊆ U and the completeness of the resulting space. Taking a step
back, we remember that continuity is a local property, and as such not only preserved by
uniform convergence, but also by locally uniform convergence. By virtue of local compact-
ness of Cd, this may be rephrased as uniform convergence on compact subsets. That is
to say, a net within C(U) should converge i� all of its images under the restriction map-
pings (1.2) are convergent in the normed spaces C(K). By choosing an exhaustion (Kn)n
of U by compact subsets, this may in turn be formalized by introducing the metric

d(f, g) :=
∞∑
n=0

1

2n
· ∥f − g∥Kn

1 + ∥f − g∥Kn

for all f, g ∈ C(U). (1.3)

The resulting metric is invariant under translations and turns C(U) into a complete
metric space by Exercise 1.3. We have moreover built in the continuity of (1.2) into the
de�nition. However, from a topological point of view, the open sets seem at �rst glance
rather complicated. Taking a closer look, we realize that the �open cylinders�

BK,r(f) :=
{
g ∈ C(U) : ∥f − g∥K < r

}
⊆ C(U) (1.4)
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are actually open for all compact subsets K ⊆ U , r > 0 and f ∈ C(U). Indeed, if
g ∈ BKn,r(f) and h ∈ B2−n·r0(g) is in the metric ball with radius r0 < 1 around g, then
using that

ϕ : [0,∞) −→ [0, 1), ϕ(x) :=
x

1 + x

is strictly increasing with inverse ϕ−1(y) = y/(1− y) yields

∥g − h∥Kn

1 + ∥g − h∥Kn

< r0 =⇒ ∥g − h∥Kn <
r0

1− r0
= ϕ−1(r0)

and thus
∥f − h∥Kn ≤ ∥f − g∥Kn + ∥g − h∥Kn < ∥f − g∥Kn + ϕ−1(r0)

Hence, setting
r0 := ϕ

(
r − ∥f − g∥Kn

)
∈ [0, 1)

produces a metric ball contained within BK,r(f), proving the openness. Conversely, every
g ∈ Br(f) is contained within BK,ϕ−1(2−nr)(f) for all n ∈ N0 and thus we may forget about
the metric balls in the sequel and only work with the open cylinders. Having established
this, we get another pleasant property of this topology essentially for free. Namely, the
continuity of the pointwise vector space operations

+: C(U)× C(U) −→ C(U)

· : C× C(U) −→ C(U)

and even of the pointwise multiplication. Geometrically, the sets (1.4) may indeed be
thought of as cylinders, as it is absolutely convex and ∥ · ∥K comes with the typically
sizable kernel

ker
(
∥ · ∥K

)
=

{
f ∈ C(U) : f

∣∣
K
≡ 0

}
.

Algebraically, the mappings ∥ · ∥K thus constitute seminorms on C(U). That is to say,
they ful�l all properties of a norm, except for having trivial kernel. By what we have
shown, they may be used as a basis for the metric topology. This correspondence between
systems of seminorms and topologies is at the heart of locally convex topologies and we
shall explore this in Section 2.

It is instructive to work out the details of the arguments used in the prior discussion.

Exercise 1.2 Let X be a metric space. Prove that a subset U ⊆ X is open i� it is a
union of open balls.

Exercise 1.3 Let X be a locally compact topological space and f, fα : X −→ C be
mappings for all α ∈ J for some directed set J . Prove that the following are equivalent:

i.) For every compact set K ⊆ X, the net of the restrictions (fα
∣∣
K
) converges uniformly

to the function f
∣∣
K
.

ii.) Every p ∈ X has an open neighbourhood U ⊆ X such that the net of restrictions
(fα

∣∣
U
) converges uniformly to the function f

∣∣
U
.

Exercise 1.4 Let U ⊆ R
d or U ⊆ C

n be open. Prove that the metric (1.3) turns C(U)
into a complete metric space.
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Before turning to the general theory, we discuss some more remarkable observations that
necessitate the investigation of functional analysis beyond norms.

Example 1.5 Consider the space C∞(R) of smooth functions on the real line and the
di�erentiation operator

D :=
d

dx
: C∞(R) −→ C∞(R).

Then the exponential functions

fα : R −→ C, fα(x) := exp
(
αx

)
constitute eigenfunctions of D for all α ∈ C. Hence, even if we somehow succeed in endow-
ing C∞(R) with the structure of a Banach algebra, then D is necessarily discontinuous
by virtue of its unbounded spectrum.

Another strange feature of normed spaces is that some are never complete, regardless of
how one chooses the norm.

Lemma 1.6 Let V be a normed vector space of countably in�nite dimension. Then V is
incomplete.

Proof: Assuming otherwise, we consider the family of closed subspaces

Vn := span{e1, . . . , en} for n ∈ N0

and where (en)n ⊆ V is any basis. Then

V =
∞⋃
n=0

Vn,

and thus there exists some n0 ∈ N such that V ◦
n0

̸= ∅ by Baire's Theorem. This is a
contradiction, as zen0+1 /∈ Vn0 for all z ∈ C \ {0}. □

Finally, we recast some classical complex analysis in a locally convex light.

Exercise 1.7 Let U ⊆ Cd be open. Prove that the space of holomorphic functions H(U)
constitutes a closed subspace of C(U).

Recall Montel's Theorem.

Theorem 1.8 (Montel) Let U ⊆ Cd be a domain. Then every locally bounded sequence
(fn)n ⊆ H(U) has a convergent subsequence.

Classically, one speaks of normality of such families of functions. The reason for this is
that Montel's work actually predates the abstract notion of compactness. Either way, we
get the following consequence.

Lemma 1.9 Let U ⊆ Cd be a domain. Then the topology of locally uniform convergence
on the space of holomorphic functions H(U) on U may not be induced by a norm.
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Proof: Assuming otherwise, we get that the open unit ball

B1(0) ⊆ H(U)

constitutes a bounded subset of H(U). By Montel's Theorem, this implies the compact-
ness of its closure B1(0)

cl, which is only possible if H(U) is �nite-dimensional. This is a
contradiction to the holomorphicity of the monomials. □

In this sense, the space H(U) behaves much like a �nite-dimensional space. The abstract
underlying reason is its nuclearity, which is the content of Section 4.

2 From Seminorms to Locally Convex Spaces

Having convinced ourselves of the wonders and richness of the locally convex world within
some examples, we now venture into the its abstract horrors. Most of the material is
standard and can be found in all of the textbooks mentioned in the introduction. That
being said, a particularly conceptually clean presentation is [11, Ch. 3]. As already noted,
we shall place our focus on seminorms, as they ultimately frame the abstract results in a
way convenient for the investigation of concrete problems.

De�nition 2.1 (Seminorms) Let V be a vector space. A mapping q: V −→ [0,∞) is
called a seminorm if:

i.) It is absolutely 1-homogeneous, i.e.

q
(
λ · v

)
= |λ| · q(v) for all v ∈ V, λ ∈ C. (2.1)

ii.) It ful�ls the triangle inequality

q(v + w) ≤ q(v) + q(w) for all v, w ∈ V.

Note that (2.1) implies q(0) = 0, as we are working in characteristic di�erent from two.
Associated to any seminorm q, we de�ne its collection of open cylinders

Bq,r(v) :=
{
w ∈ V : q(v − w) < r

}
with radius r > 0. We proceed with a list of examples.

Example 2.2 (Seminorms)

i.) Every norm is a seminorm. The corresponding open cylinders are the open balls we
are all used to.

ii.) Let v′ : V −→ C be linear. Then

|v′| := | · | ◦ v′

is a seminorm of particularly simple type. An instructive example is the projection

v′ : R2 −→ C, v′(x1, x2) := x1
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onto the �rst component. Then

ker|v′| = ker v′ = {0} ×R

as well as

|v′|
(
(x1, x2)− (y1, y2)

)
=

∣∣x1 − y1
∣∣ for all x, y ∈ R2.

Consequently,

B|v′|,r(x) =
{
y ∈ R2 : |x1 − y1| < r

}
= (x1 − r, x1 + r)×R

really constitutes a cylinder in this case.

iii.) Let U ⊆ C
d be open. Then mappings ∥ · ∥K constitute seminorms on C(U) for all

compact subsets K ⊆ U . More generally, we get seminorms on H(U) by setting

∥f∥K,α := max
|β|≤|α|

∥∥∂αf
∥∥
K

for any multi-index α ∈ Nd
0. Replacing complex derivatives with real ones, the same

formula also de�nes seminorms on C∞(U). By virtue of the identity principle, if U
is connected, then ∥ · ∥K is even a norm on H(U) for every compact K ⊆ U with
non-empty open interior.

iv.) For every r > 0, the mappings

qr

( ∞∑
n=0

an · zn
)

:=
∞∑
n=0

|an| · rn

de�ne norms on H(C).

v.) Let n,m ∈ N0 and de�ne

rn,m(f) := sup
x∈R

(1 + x2)m ·
∣∣fn(x)

∣∣
for f ∈ C∞(R). Then rn,m(f) < ∞ for all n,m ∈ N0 is equivalent to f being an
element of the classical Schwartz space. Once again, we are actually dealing with
norms instead of just seminorms.

It is a common theme within locally convex analysis to rephrase the membership in
some function space as a seminorm condition. As we shall see, this then gives rise to
an associated locally convex topology, which often turns out to have desirable properties
such as completeness.

Exercise 2.3 Show that the systems of seminorms{
∥ · ∥K : K ⊆ C compact

}
and {

qr : r > 0
}

are equivalent on H(C). That is to say, for every compact subset K ⊆ C there exists
some r > 0 with

∥f∥K ≤ qr(f) for all f ∈ H(C)

and, conversely, for every r > 0 there exists a compact set K ⊆ Cd such that

qr(f) ≤ ∥f∥K for all f ∈ H(C).
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Remarkably, one may reconstruct a seminorm from its open unit cylinder. This corre-
spondence between algebraic gadgets and geometric objects is established by means of
the Minkowski functional.

De�nition 2.4 (Minkowski functional) Let V be a vector space and U ⊆ X be ab-
sorbing, i.e. ⋃

r>0

rU =
⋃
r>0

{
r · v : v ∈ U

}
= V.

Then
pU : V −→ [0,∞), pU(v) := inf

{
r > 0: v ∈ r · U

}
(2.2)

is called the Minkowski functional of U .

Recall that a subset C of a vector space V is called convex if the line segment

[v, w] :=
{
λ · v + (1− λ)w : λ ∈ [0, 1]

}
⊆ C

for all v, w ∈ C. It is called balanced (or cicled) if

η · U = U for all η ∈ C, |η| = 1.

Combining both notions, one speaks of absolute convexity of U .

Proposition 2.5 Let V be a vector space and U ⊆ V be absorbing.

i.) The Minkowski functional (2.2) is well-de�ned.

ii.) If U is convex, then pU is sublinear, i.e.

pU(v + w) ≤ pU(v) + pU(w) and p(r · v) = r · p(v)

for all v, w ∈ V and r ≥ 0.

iii.) If U is convex and balanced, then pU is a seminorm. Moreover,

BpU ,1(0) ⊆ U ⊆ BpU ,1(0)
cl.

iv.) If q is a seminorm, then the open cylinders Bp,r(0) are absorbing, convex and bal-
anced for all r > 0. Moreover,

pBq,1(0) = q = pBq,1(0)cl ,

where we de�ne
Bq,1(0)

cl =
{
v ∈ V : q ≤ 1

}
.

Exercise 2.6 Prove Proposition 2.5.

The central idea behind locally convex topologies now to use the open cylinders corre-
sponding to a collection of seminorms as the basis of a topology. This is also where the
phrase locally convex stems from: The origin possesses a neighbourhood basis consisting
of absolutely convex sets! By Proposition 2.5, this demand automatically leads towards
seminorms.
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Returning to this idea, we de�ne a topology on V associated to some collection P of
seminorms by �rst taking �nite intersections of open cylinders and then arbitrary unions
of the resulting sets. There is a simple condition on the level of seminorms, as to when we
may skip the �rst step, i.e. are actually dealing with a basis of the topology. Note that
any set of seminorms is, in particular, a set of real-valued mappings de�ned on a joint
domain. As such, it carries the pointwisely de�ned partial order, i.e.

q ≤ p ⇐⇒ q(v) ≤ p(v) for all v ∈ V.

Recall that a partially ordered set (P,≤) is called a directed if , i.e. for all q1, q2 ∈ P

there exists p ∈ P with q1 ≤ p and q2 ≤ p.

Lemma 2.7 Let V be a vector space and P a set of seminorms on V such that (P,≤) is
a directed set. Then every �nite intersection of elements within the set

B :=
{
Bq,r(v) : q ∈ P, r > 0, v ∈ V

}
(2.3)

may be written as a union of elements of B.

Proof: It su�ces to prove the claim for intersections of two open cylinders. To this end,
let q1, q2 ∈ P, r1, r2 > 0 and v1, v2 ∈ V such that

U := Bq1,r1(v1) ∩ Bq2,r2(v2) ̸= ∅.

By assumption, we �nd a joint upper bound p ∈ P of q1 and q2. Let v ∈ U and

rv := min
{
r1 − q1(v − v1), r2 − q2(v − v2)

}
> 0.

Then Bp,rv(v) ⊆ U , as

q1
(
v − w

)
≤ q1

(
v − v1

)
+ p

(
v1 − w

)
< q1

(
v − v1

)
+ rv < r1

and, analogously, q2(v − w) < r2 for all w ∈ Bp,r(v). Consequently, we get

U =
⋃
v∈U

Bp,rv(v),

as v ∈ Bp,rv(v) for all v ∈ U . □

It is customary to call a collection of seminorms P �ltrating if (P,≤) is directed. As
linear combinations of seminorms with non-negative coe�cients are again seminorms, the
collection of all seminorms is always �ltrating. We are now in a position to de�ne locally
convex spaces.

De�nition 2.8 (Locally convex space) A vector space V endowed with a topology is
called locally convex if there exists a �ltrating system of seminorms P on V such that

B :=
{
Bq,r(v) : q ∈ P, r > 0, v ∈ V

}
constitutes a basis of the topology. We then call P a de�ning system of seminorms for V .
Moreover, we write

cs(V ) :=
{
q: V −→ R

∣∣ q is a continuous seminorm
}

for the set of all continuous seminorms of a locally convex space.
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This de�nition raises some questions, the answers of which we collect before proceeding.

Proposition 2.9 Let V be locally convex with de�ning system of seminorms P.

i.) The locally convex space V is a topological vector space, i.e.

+: V × V −→ V and · : C× V −→ V

are continuous, where we endow V × V and C× V with the product topology.

ii.) For every v ∈ V , the translation

τv : V −→ V, τv(w) := v + w

constitutes a linear homeomorphism.

iii.) A seminorm q on V is continuous i� there exist p1, . . . , pn ∈ P and c1, . . . , cn > 0
such that

q ≤ c1 · p1 + · · ·+ cn · pn. (2.4)

iv.) The locally convex topology induced by the collection of all continuous seminorm
coincides with the topology of V .

v.) A subset U ⊆ V is open i� for every v ∈ U there exists q ∈ cs(V ) and some r > 0
with

Bq,r(v) ⊆ U.

vi.) The locally convex space V is Hausdor� i� for every v ∈ V there exists q ∈ cs(V )
with q(v) > 0.

Proof: Let q ∈ P, r > 0 and v ∈ V . We have to prove that

+−1
(
Bq,r(v)

)
=

{
(v1, v2) ∈ V × V : q(v1 + v2 − v) < r

}
is open. Let (v1, v2) ∈ +−1(Bq,r(v)) and set δ := q(v1 + v2 − v). We claim

B := Bq,(r−δ)/2(v1)× Bq,(r−δ)/2(v2) ⊆ +−1
(
Bq,r(v)

)
.

Indeed, if (w1, w2) ∈ B, then by the triangle inequality

q
(
w1 + w2 − v

)
≤ q

(
w1 − v1

)
+ q

(
w2 − v2

)
+ q

(
v1 + v2 − v

)
<

r − δ

2
+

r − δ

2
+ δ = r.

As B ⊆ V ×V is open in the product topology as a product of open sets, this implies the
continuity of the vector space addition. Similarly, for the multiplication by scalars, we
construct open neighbourhoods of

(z0, w0) ∈ ·−1
(
Bq,r(v)

)
=

{
(z, w) ∈ C× V : q(zw − v) < r

}
.

Indeed, if (z, w) ∈ Br1(z0)× Bq,r2(w0) with δ := q(zw − v), then

q(zw − v) ≤ q(zw − zw0) + q(zw0 − z0w0) + q(z0w0 − v)

= |z0| · q(w − w0) + |z − z0| · q(w0) + q(z0w0 − v)

< |z0| · r2 + r1 · q(w0) + δ.
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Hence, setting

r1 := r2 :=
r − δ

2(1 + q(w0) + |z0|)
implies

Br1(z0)× Bq,r2(w0) ⊆ ·−1
(
Bq,r(v)

)
.

We have thus shown i.). Now, ii.) is clear, as the inclusions V ↪→ V × V are topological
embeddings. For iii.), let q ∈ cs(V ). Then, by de�nition of continuity, the preimage

q−1
(
[0, 1)

)
⊆ V

is open. Hence, it can be written as a union of open cylinders corresponding to elements
of P. In particular, we �nd p ∈ P and r > 0 such that

Bp,r(0) ⊆ q−1
(
[0, 1)

)
= Bq,1(0),

where we use q(0) = 0.1 Unwrapping the de�nition of the open cylinder, this means

p(v) < r =⇒ q(v) < 1

for all v ∈ V . By homogeneity, we may rephrase this as the continuity estimate

q(v) ≤ r · p(v) for all v ∈ V.

This is (2.4), where we may thus even choose n = 1. Assume conversely (2.4) holds for
some seminorm q and suitably chosen p1, . . . , pn ∈ P and c1, . . . , cn > 0. As P is �ltrating,
we may pass to a joint upper bound p ∈ P of p1, . . . , pn to obtain

q ≤ c · p

with c := c1 + · · ·+ cn. Reversing the logic from before, this means

Bp,1(0) ⊆ Bq,1/c(0) = q−1
(
[0, 1/c)

)
.

Hence, p is continuous at the origin. Let now (vα)α∈J be a convergent net with limit
v ∈ V . Then the net (v− vα)α converges to zero by ii.). By what we have already shown,
given ε > 0 we thus �nd α0 ∈ J such that

p(vα) ≤ p(v) + p(v − vα) ≤ ε for all α ≽ α0.

Bringing p(v) to the other side and varying ε implies p(vα) → p(v), establishing the
continuity of p on all of V . This completes the proof of iii.). We turn towards iv.). By
De�nition 2.8, it is clear that the topology induced by cs(V ) is �ner than the one induced
by P. It thus su�ces to prove that given q ∈ cs(V ), r > 0 and v ∈ V , the associated open
cylinder Bq,r(v) is already a member of the topology generated by P. For v = 0, this is
just the geometric formulation of iii.). Invoking ii.), this implies the openness of

τv
(
Bq,r(0)

)
= Bq,r(v)

as homeomorphisms are, in particular, open mappings. Part v.) is now immediate, as
each Bq,r(v) for q ∈ cs(V ) contains an open cylinder associated to a seminorm from the

1If you are not familiar with this type of reasoning within topological spaces, prove this!
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de�ning system P by what we have just shown. Finally, assume the Hausdor� property.
Then, we may separate v ̸= 0 from the origin. In particular, there exist q ∈ P and r > 0
with

v /∈ Bq,r(0),

which means q(v) > r > 0. Conversely, assume the condition and let v, w ∈ V with v ̸= w.
Then v − w > 0 and thus we may invoke our assumption to �nd q ∈ cs(V ) such that
r := q(v − w) > 0. Consequently,

Bq,r/2(0) ∩ Bq,r/2(v − w) = ∅

by the triangle inequality. Translating by w via ii.) then yields

Bq,r/2(w) ∩ Bq,r/2(v) = ∅.

Hence, V is Hausdor� in this case. □

In the proof of iii.), we have seen that it su�ces to consider the case n = 1. Our more
general formulation is however often useful in practice. The following exercise ties a loose
end from earlier.

Exercise 2.10 Let V be locally convex, q ∈ cs(V ) and r > 0. Prove that the open
cylinder Bq,r(v) is sequentially dense in the closed cylinder

Bq,r(v)
cl :=

{
w ∈ V : q(v − w) ≤ r

}
.

This, a posteriori, justi�es our notation.

Next, we take a brief look at how convergence within a locally convex space may be
described. Ultimately, the generalization is both straightforward and convenient.

Lemma 2.11 Let V be a locally convex space with de�ning system of seminorms P. Then
a net (vα)α∈J converges to a vector v ∈ V i� for every q ∈ P and every ε > 0, there exists
an index α0 ∈ J such that

q
(
vα − v

)
≤ ε for all α ≽ α0. (2.5)

In this case, the condition holds for all q ∈ cs(V ).

Proof: Assume �rst that the net (vα)α∈J is convergent with limit v ∈ V and let q ∈ cs(V ).
Then the open cylinder Bq,ε(v) constitutes an open neighbourhood of v by Proposi-
tion 2.9,iv.) and v.). By convergence of (vα)α∈J there thus is some α0 ∈ J such that
vα ∈ Bq,ε(v) for all α ≽ α0. This is precisely (2.5). Conversely, let again ε > 0 as well
as q ∈ P and assume the validity of (2.5). Then vα ∈ Bq,ε(v) for all α ≽ α0. As the
open cylinders corresponding to seminorms from the de�ning system form a basis of the
topology, this already proves the convergence of (vα) to v. □

Motivated by the Lemma, we call a net (vα)α∈J ⊆ V within a locally convex space V
Cauchy if for every q ∈ P and every ε > 0 there exists an index α0 ∈ J such that

q
(
vα − vβ

)
≤ ε for all α, β ≽ α0.

In this case, the condition holds for all q ∈ cs(V ). As usual, we then call V complete
if all Cauchy nets converge. If the topology of V actually arises from a single norm,
then this indeed recovers the usual notions of Cauchy nets and, by �rst countability, of
completeness.
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Exercise 2.12 Let V be a vector space and ∥ · ∥ a norm on V . Prove that the locally
convex topology induced by P := {∥ · ∥} is the norm-topology. Can you describe the set
of all continuous seminorms cs(V ) on V ?

Each of the systems of seminorms from Example 2.2 now induces the corresponding vector
spaces with locally convex topologies.

Exercise 2.13 Consider the space of complex sequences

Map(N0,C) :=
{
a : N0 −→ C

}
.

i.) Construct a de�ning system of seminorms such that the resulting locally convex
topology is the topology of pointwise convergence.

Hint: Remember that de�ning systems are �ltrating.

ii.) Establish the completeness of the locally convex space Map(N0,C).

iii.) Let ∥ · ∥ be a norm on Map(N0,C). Prove that ∥ · ∥ is discontinuous.

iv.) Show that the space

c00 :=
{
a ∈ Map(N0,C) : ∃N∈N0∀n≥N an = 0

}
.

of compactly supported sequences is dense within Map(N0,C).

Hint: It is not sequentially dense. Use nets.

Proposition 2.14 Let L : V −→ W be a linear mapping between locally convex spaces V
and W with corresponding de�ning systems of seminorms PV and PW . Then the following
are equivalent:

i.) The map L is uniformly continuous.

ii.) The map L is continuous.

iii.) The map L is continuous at some v ∈ V .

iv.) The map L is continuous at the origin.

v.) For every q ∈ cs(V ) there exist p ∈ PV and c > 0 such that

q
(
Lv

)
≤ c · p(v) for all v ∈ V. (2.6)

vi.) For every q ∈ PW there exists p ∈ cs(V ) such that

q
(
Lv

)
≤ p(v) for all v ∈ V.

Proof: Clearly, i.) implies ii.), which in turn implies iii.). Assuming L is continuous at
a point v ∈ V implies the continuity of the composition

w 7→
(
τ−Lv ◦ L ◦ τv

)
(w) = L(v)− L(v + w) = Lw

at w = 0, as τv(0) = v and by Proposition 2.9, ii.). This is iv.). Alternatively, this
follows readily by checking the continuity at zero by means of nets and using the linearity.
Assume now iv.) and let q ∈ cs(V ). As Bq,1(0) constitutes an open neighbourhood of
zero, the continuity yields the openness of its preimage under L. As the open cylinders

12



centered at zero corresponding to PV form a neighbourhood basis, we thus �nd p ∈ PV

and c > 0 such that
Bp,1/c(0) ⊆ L−1

(
Bq,1(0)

)
.

Unwrapping this inclusion yields precisely (2.6). As multiples of continuous seminorms
are continuous, v.) implies vi.). Finally, assume vi.) and let q ∈ PW as well as r > 0. By
rescaling our assumption, we �nd p ∈ cs(V ) such that

q
(
Lv

)
≤ p(v) for all v ∈ V.

That is to say,

Lv − Lw = L(v − w) ∈ Bq,r(0) for all v, w ∈ V such that v − w ∈ Bp,r(0).

This is precisely the uniform continuity of L. □

Both v.) and vi.) are useful in practice: The former for using, the latter for checking
continuity. It is instructive to apply Proposition 2.14 to some simple examples. They also
illustrate the usefulness of working with small de�ning systems, while also being aware of
many continuous seminorms.

Exercise 2.15 Let V be a �nite dimensional locally convex Hausdor� space. Prove that,
choosing a basis (e1, . . . , ed) of V , the coordinate mapping

Φ: Cd −→ V, Φ(z1, . . . , zd) :=
d∑

n=1

znen

constitutes a linear homeomorphism.

Exercise 2.16 Prove the continuity of the di�erentiation operator

D: H(C) −→ H(C), D f := f ′

and the multiplication operator

M: H(C) −→ H(C),
(
M f

)
(z) := zf(z).

Compute also the commutator [
D,M

]
:= D ◦M−M ◦D .

Conclude again that the topology of H(C) can not be induced by a norm.

Hint: It might be convenient to take another look at Exercise 2.3 in light of the new technology we have

established in the meantime.

The situation, in which we �nd a countable de�ning system of seminorms deserves partic-
ular attention. In this case, the locally convex topology is �rst countable, i.e. every point
possesses a countable basis of neighbourhoods.

Proposition 2.17 (Metrizability) Let V be a locally convex space. Then the following
are equivalent:

13



i.) The space V is �rst countable.

ii.) There exists a countable de�ning system of seminorms for V .

iii.) There exists an ascending sequence (qn) of seminorms de�ning the topology of V .

iv.) The topology of V is metrizable by means of a translation invariant metric d, i.e.

d(v + x,w + x) = d(v, w) for all v, w, x ∈ V.

v.) The topology of V is metrizable.

Proof: Assuming ii.), there exists a countable neighbourhood basis (Un)n of the origin.
As the open cylinders centered at 0 corresponding to continuous seminorms on V consti-
tute a neighbourhood basis themselves, we �nd corresponding seminorms pn ∈ cs(V ) such
that

Bpn,1(0) ⊆ Un for all n ∈ N0.

Translating these balls by means of Proposition 2.9, ii.) we get countable neighbourhood
bases consisting of open cylinders corresponding to the pn. Thus, P := {pn : n ∈ N0}
constitutes a countable de�ning system of seminorms for the locally convex space V .
As cs(V ) is closed under taking pointwise maxima of �nitely many elements, we may
de�ne

qn := max
{
p1, . . . , pn

}
for all n ∈ N0

to obtain an ascending countable de�ning system of seminorms for V . Mimicking the
construction from Example 1.1, this in turn yields a translation invariant metric d on V
de�ned by

d(v, w) :=
∞∑
n=0

2−n · qn(v − w)

1 + qn(v − w)
.

Repeating our considerations regarding the metric balls establishes that d generates the
topology of V . Finally, metrizable spaces are certainly �rst countable. □

If one (and thus all) of the conditions within Proposition 2.17 are ful�lled, and V is more-
over complete Hausdor�, then we call V a Fréchet space. Banach spaces are particular
examples of Fréchet spaces by Exercise 2.12. As the First Baire Category Theorem ap-
plies to complete metric spaces, it should be of no surprise that there are Fréchet space
generalizations of the Banach-Steinhaus Theorem, the Open Mapping Theorem and the
Closed Graph Theorem. In fact, appropriately phrased, they remain valid beyond the
setting of Fréchet spaces. The exploration of these topics however goes way beyond the
scope of these lecture notes. Discussions can be found in any of the excellent textbooks
mentioned at the beginning of the text, where we once again highlight [11, Ch. 4 & 5] for
a particularly pleasant experience.

Instead, we proceed with a locally convex incarnation of the Hahn-Banach Extension
Theorem, which we shall need for our exploration of tensor products.

Theorem 2.18 (Hahn-Banach) Let V be a vector space and q: V −→ R be sublinear.
Furthermore, let U ⊆ V be a subspace and

u′ : U −→ C

14



be a linear functional on U such that |u′| ≤ q. Then there exists a linear functional
v′ : V −→ C such that

v′
∣∣∣
U
= u′ and |v′| ≤ q.

In view of Proposition 2.14, this means that we may extend continuous linear functional
from subspaces in manner that preserves continuity estimates. This statement is ulti-
mately a purely algebraic application of Zorn's Lemma. It is quite likely that you have
already seen a su�ciently general incarnation before. Thus, instead of rehearsing the
details, we conclude our abstract considerations with a quite useful consequence for later.

Exercise 2.19 Let V be locally convex and q ∈ cs(V ). Then

q(v) = sup
|v′|≤q

∣∣v′(v)∣∣ for all v ∈ V. (2.7)

Another amusing application is the existence of so-called Banach limits.

Exercise 2.20 (Banach Limits) Let L : ℓ∞(R) −→ ℓ∞(R) be the left-shift on the space
of real bounded sequences, i.e. (La)n := an+1 for all a ∈ ℓ∞(R). Prove that there exists
a continuous linear functional Λ on ℓ∞ such that

Λ(La) = Λ(a) and lim inf
n→∞

an ≤ Λ(a) ≤ lim sup
n→∞

an

for all a ∈ ℓ∞(R).

Hint: Consider the functionals

Λn(a) :=
1

n

n−1∑
k=0

ak

de�ned on the subspace

Y :=
{
a ∈ ℓ∞(R) : lim

n→∞
Λn(a) exists

}
.

After our abstract considerations on locally convex spaces, our goal is now to endow
the space of complex-valued smooth functions C∞(M) de�ned on a manifold M with
a locally convex topology. In Example 2.2, iii.), we have already met seminorms for
smooth functions de�ned on open subsets of Rn or Cn. As usual in di�erential geometry,
the idea is then that this re�ects the situation within a chart. While this approach is
perfectly serviceable, there is a more conceptual (and ultimately equivalent) approach
based on di�erential operators and having already established the C-topology, see again
Example 1.1.

De�nition 2.21 (C-topology) Let M be a topological space. Then the C-topology on
the space of complex-valued continuous functions C(M) is the locally convex topology
generated by the seminorms

qK(f) := max
p∈K

∣∣f(p)∣∣,
where we vary K ⊆ M through the compact subsets of M .
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As Recall Grothendieck's [4] recursive de�nition of di�erential operators of an associative
algebra A as it is e.g. discussed in [9, Ch. 15]. That is, DiffOp(A) is the �ltered algebra

DiffOp0(A) :=
{
Ma : a ∈ A

}
,

DiffOpk(A) :=
{
D ∈ L(A)

∣∣ ∀a∈A : [D,Ma] ∈ DiffOpk−1(A)
}

for k > 0,

where L(A) is the space of k-linear maps from A to A, theMa are multiplication operators
with a ∈ A and[

· , ·
]
: L(A)× L(A) −→ L(A), [D,D′] := D ◦D′ −D′ ◦D

is the commutator induced from the associative algebra structure of L(A). If A is unital,
then

DiffOp0(A) ∼= EndA(A) ∼= A,

where EndA(A) denotes the set of A-linear endomorphisms of A. The algebra we are
interested in is of course A = Ck(M) with k ∈ N ∪ {∞}.

Exercise 2.22 Let M be a manifold and k ∈ N. Prove

DiffOpℓ
(
Ck(M)

)
= DiffOpk

(
C∞(M)

)
for ℓ = 0, . . . , k.

In the sequel, we thus simply speak of DiffOpℓ(M).

More generally, one may consider C-linear mappings

D : E −→ F

between unital A-modules E and F. Accordingly, the multiplication operators Ma with
a ∈ A now act on E and F by module multiplication. Hence, we may also speak of
di�erential operators

D : Γ∞(E) −→ Γ∞(F )

between spaces of sections of vector bundles prE : E −→ M and prF : F −→ M over
the same base manifold M . With these preliminaries, we may de�ne the Ck-topologies
for �nite k. The idea is that we may view a di�erential operator of order k as a linear
mapping

D : Ck(M) −→ C(M). (2.8)

Whatever the Ck-topology may entail, we certainly want all such mappings to be con-
tinuous. As we are already in possession of a topology on C(M), the natural choice
thus becomes the initial topology, i.e. the coarsest topology such that all mappings (2.8)
become continuous.

De�nition 2.23 (Ck-topology) Let M be a manifold and k ∈ N. The Ck-topology on
the space of k-times di�erentiable functions Ck(M) is the initial topology with respect to
the mappings

D : Ck(M) −→ C(M),

where we vary D ∈ DiffOpk(M).
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The de�nition for the Γk-topology of k-times di�erentiable sections is mutatis mutandis
identical. Remarkably, initial topologies induced by linear mappings into locally convex
spaces are automatically locally convex.

Proposition 2.24 Let
Lα : V −→ Vα

be linear mappings from a vector space V with values in locally convex spaces Vα. Then
the associated initial topology on V is locally convex. More precisely, if Pα are de�ning
systems of seminorms for Vα for all α ∈ J , then

P :=
{
L∗
αpα := pα ◦ Lα : α ∈ J, pα ∈ Pα

}
(2.9)

constitutes a de�ning system of seminorms for V .

Proof: By linearity of the ϕα, the pullbacks ϕ∗
αpα are indeed seminorms on V . As locally

convex topologies are de�ned by means of the bases (2.3), we get a basis for the topology
of V , which is given by

B :=
{
L−1
α

(
Bpα,r(vα)

)
: α ∈ J, pα ∈ Pα, r > 0, vα ∈ Vα

}
.

Notice now

ϕ−1
α

(
Bpα,r(Lαv)

)
=

{
w ∈ V : pα

(
Lαv − Lαw

)
< r

}
= Bϕ∗

αpα,r(v)

for all w ∈ V , α ∈ J and r > 0. Now, if vα /∈ LαV , then

ϕ−1
α

(
Bpα,r(Lαv)

)
= ∅

for all su�ciently small r > 0. Thus, as continuity is a local property, we may simplify B

to
B′ :=

{
Bϕ∗

αpα,r(v) : α ∈ J, pα ∈ Pα, r > 0, v ∈ V
}
,

which establishes the local convexity of V with de�ning system of seminorms as described
within (2.9). □

Returning to the concrete situation, we thus get the following.

Corollary 2.25 Let M be a manifold and k ∈ N. Then the Ck-topology on Ck(M) is
locally convex with de�ning system of seminorms given by

pK,D(f) = max
p∈K

∣∣Df
∣∣, (2.10)

where we vary K ⊆ M through the compact subsets of M and D ∈ DiffOpk(M).

Plugging in the local form of di�erential operators now in principle allows us to return to
the chart-based approach we have indicated earlier. Indeed, if (U, x) is a chart of M and
K ⊆ M is compact, then localizing DU = Dα∂α yields the continuous seminorm

rU,K,D(f) := max
p∈K

∣∣∣∣Dα∂
|α|f

∂xα

∣∣∣∣
17



seminorm on Ck(M). Here, we employ the usual multi-index notation and also Einstein's
summation convention. By our considerations, the locally convex topology arising from
such seminorms is independent of the chosen atlas and instead intrinsic to the smooth
structure.

Finally, the passage to C∞(M) is based on the simple observation that

C∞(M) ↪→ · · · ↪→ Ck+1(M) ↪→ Ck(M) ↪→ Ck−1(M) ↪→ · · · ,

i.e. we have canonical linear injections C∞(M) ↪→ Ck(M) for all k ∈ N0. Hence, we
may once again use the initial topology to endow C∞(M) with its own locally convex
topology. Taking another look at (2.9), the continuous seminorms are simply given by
(2.10), where D ∈ DiffOp(M) is now any di�erential operaotr of M . Note that there are
still only �nitely many derivatives involved in each seminorm. Having established this
point of view, the following structural observations are easy to check, but nevertheless
instructive.

Proposition 2.26 Let M be a manifold and k ∈ N ∪ {∞}.

i.) The Ck-topology is Fréchet.

ii.) The pointwise multiplications

· : Ck × Ck −→ Ck

are continuous bilinear mappings.

iii.) The inclusions Cℓ ↪→ Ck are continuous and dense for all 0 ≤ ℓ ≤ k, where we
de�ne

C0(M) := C(M).

iv.) The subspaces

Cℓ
0(M) :=

{
f ∈ Cℓ(M) : supp f is compact

}
⊆ Ck(M)

of compactly supported Cℓ-functions are dense for all ℓ = 0, . . . , k.

Exercise 2.27 Prove Proposition 2.26.

This leaves the question of how to topologize Cℓ
0(M) such that it becomes complete itself.

If one is interested in distributions (in the sense of generalized functions), this turns out
to be an unavoidable question. However, the answer turns out much more involved and
ultimately uses �nal locally convex topologies. Unlike for initial topologies, one then has
to demand to stay within the category of locally convex spaces. The interested reader can
�nd the construction of the so-called inductive limit topology within [6, Sec. 4.5�4.6].

3 Projective and Injective Tensor Products

There is a plethora of well written treatments of projective tensor products such as [8, �41]
and [6, Sec. 15]. The typical discussions of injective tensor products su�er from a distinct
lack of focus on seminorms, and as such the lecture notes [17, Sec. 6.3] are the most
recommendable source for further reading. We begin our considerations with the central
example we would like to understand.
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Example 3.1 We consider the Banach space C([0, 1]) of complex-valued continuous func-
tions on the unit interval. Its tensor square

V := C([0, 1])⊗ C([0, 1])

naturally embeds into C([0, 1]× [0, 1]) by means of linearly extending(
f ⊗ g

)
(x, y) := f(x) · g(y). (3.1)

The resulting space constitutes a point separating ∗-subalgebra of C([0, 1]× [0, 1]) contain-
ing the constant functions and as such is dense with respect to the topology of uniform
convergence on the unit square [0, 1]× [0, 1] by virtue of the Stone-Weierstraÿ Theorem.

The goal of this section is, roughly speaking, to endow the algebraic tensor product V ⊗W
of two locally convex spaces V and W with a locally convex topology derived solely from
the topologies of the constituent spaces. Remarkably, one has a multitude of reasonable
choices here, a problem famously explored by Grothendieck's [3] during his time as a PhD
student. In these notes, we restrict ourselves to injective and projective tensor products,
both of which enjoy a plethora of pleasant properties and may be described by explicit
de�ning system of seminorms. Moreover, they pave the way for a conceptually pleasing
de�nition of nuclearity.

We begin with the injective �avour. The principal observation is that for any element
φ ∈ V ′ of the (continuous) dual space of V , its absolute value |φ| de�nes a continuous
seminorm on V . Such seminorms are particularly simple, as they come with a sizable
kernel.

De�nition 3.2 Let V and W be locally convex spaces.

i.) For q ∈ cs(V ) and p ∈ cs(W ), we de�ne their injective tensor product as(
q⊗ε p

)
(x) := sup

{∣∣(v′ ⊗ w′)(x)
∣∣ : v′ ∈ V ′, |v′| ≤ q, w′ ∈ W ′, |w′| ≤ p

}
(3.2)

for all v ∈ V and w ∈ W .

ii.) The injective tensor product topology on V ⊗W is generated by the seminorms q⊗εp,
where we vary q ∈ cs(V ) and p ∈ cs(W ). We write V ⊗ε W for the resulting locally
convex space.

The linearity of v′ and w′ ensures that (3.2) indeed constitutes a seminorm. It is straight-
forward to verify that it su�ces to take injective tensor products of seminorms from
de�ning systems of V and W . Moreover, the resulting system is indeed �ltrating.

Remark 3.3 (Polars) Let V and W be locally convex spaces. The polar of a subset
A ⊆ V is de�ned by

A^ :=
{
v′ ∈ V ′ :

∣∣v′(v)∣∣ ≤ 1 for all v ∈ A
}
.

The condition on v′ and w′ within (3.2) may thus be rephrased as

v′ ∈ B^q := (Bq,1(0)
cl)^ ⊆ V ′ and w′ ∈ B^p := (Bp,1(0)

cl)^ ⊆ W ′,
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respectively. As the closed cylinders constitute zero neighbourhoods, the Banach-Alaoglu
Theorem asserts that these polars are compact with respect to the weak∗-topology, i.e.
the topology of pointwise convergence. If V is normed, then

B^∥ · ∥ =
{
v′ ∈ V ′ : ∀v∈V

∣∣v′(v)∣∣ ≤ ∥v∥
}
= B1(0)

cl,

where we endow V ′ with the operator norm. This recovers the weak∗ compactness of the
unit ball in V ′. Thus polars may be regarded as the locally convex incarnation of these
balls. More comprehensive discussions can be found within [].

Exercise 3.4 Let V be normed. Interpret the statement of Exercise 2.19 in the context
of its bidual V ′′.

The following reformulation of (3.2) is often useful, as it only uses one supremum. The
idea is that we may pair away a factor of the tensor product to obtain a linear mapping
from the continuous dual space to the remaining factors.

Lemma 3.5 Let V and W be locally convex spaces. Then

ιV : V ⊗ W −→ L(V ′,W ), ιV (v ⊗ w)v′ := v′(v) · w
ιW : V ⊗ W −→ L(W ′, V ), ιW (v ⊗ w)w′ := w′(w) · v

extend to well-de�ned linear injections. Moreover,(
q⊗ε p

)
(x) = sup

|v′|≤q

p
(
ιV (x)v

′) = sup
|w′|≤p

q
(
ιW (x)w′) (3.3)

for all x ∈ V ⊗ W , q ∈ cs(V ) and p ∈ cs(W ).

Note that we have to endow V ′ andW ′ with locally convex topologies to speak of L(V ′,W )
and L(W ′, V ). As we shall show in a moment, any reasonable choice works, as the
mappings are already continuous with respect to the topology of pointwise convergence.

Proof: The continuity of ιV (v ⊗ w) follows from the estimate

p
(
ιV (x)v

′) ≤ ∑
k

p
(
ιV (vk ⊗ wk)v

′) = ∑
k

∣∣v′(vk)∣∣ · p(wk)

for all v′ ∈ V ′, p ∈ cs(W ) and x =
∑

k vk ⊗ wk ∈ V ⊗ W at once. Indeed, �xing x and
setting

rv : V
′ −→ R, rv(v

′) :=
∣∣v′(v)∣∣,

we have shown the continuity estimate

p
(
ιV (x)v

′) ≤ ∑
k

rvk(v
′) · p(wk)

for all v′ ∈ V ′ and p ∈ cs(W ). In particular, ιV (x) is continuous for all �ner topologies on
V ′. The continuity of ιW (x) follows by swapping the roles of V and W . Unwrapping (3.3)
and using Exercise 2.19, we get

sup
|v′|≤q

p
(
ιV (x)v

′) = sup
|v′|≤q

p

(∑
k

v′(vk) · wk

)
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= sup
|v′|≤q

sup
|w′|≤p

∣∣∣∣w′
(∑

k

v′(vk) · wk

)∣∣∣∣
= sup

|v′|≤q

sup
|w′|≤p

∣∣∣∣∑
k

v′(vk) · w′(wk)

∣∣∣∣
=

(
q⊗ε p

)
(x).

The other equality follows analogously. □

Using this, we may show that ⊗ε formalizes vector-valued versions of many familiar spaces.

Example 3.6 Let M be a set and consider the normed space

B(M) :=
{
f : M −→ C : ∥f∥∞ := sup

x∈M

∣∣f(x)∣∣ < ∞
}

of all bounded complex-valued mappings de�ned on M . Moreover, let V be locally convex.
We are interested in the tensor product B(M)⊗V , which turns out to be related to vector-
valued bounded functions on M . In this context, we call a function F : M −→ V bounded
if F (M) ⊆ V is bounded, i.e. supz∈M q(F (z)) < ∞ for all q ∈ cs(V ). Hence, the space
B(M,V ) carries a natural locally convex topology induced by the seminorms

qM(F ) := sup
z∈M

q
(
F (z)

)
,

where we vary q ∈ cs(V ). Notably, we may embed B(M)⊗ V into B(M,V ) by linearly
extending (

f ⊗ v
)
(z) := f(z) · v. (3.4)

The tensor product B(M) ⊗ V then corresponds precisely of the mappings with images
contained in �nite dimensional bounded subsets of V . Using (3.3) and (2.7), we compute(

∥ · ∥∞ ⊗ε q
)
(x) = sup

|v′|≤q

∥∥ιV (x)v′∥∥∞

= sup
|v′|≤q

sup
z∈M

∣∣ιV (x)v′∣∣
= sup

z∈M
sup
|v′|≤q

∣∣∣∣∑
k

v′(vk) · fk(z)
∣∣∣∣

= sup
z∈M

sup
|v′|≤q

∣∣∣∣v′(∑
k

vk · fk(z)
)∣∣∣∣

= sup
z∈M

q
(
x(z)

)
= qM(x)

for q ∈ cs(V ) and x =
∑

k fk ⊗ vk ∈ B(M) ⊗ V . Hence, (3.4) extends to a linear
embedding

B(M)⊗ε V ↪→ B(M,V ). (3.5)

If V is complete, this embedding has dense range, so that

B(M,V ) ∼= B(M)⊗̂εV. (3.6)
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We leave the remaining details as an exercise.

Exercise 3.7 Let M be a set and V a complete Hausdor� locally convex space.

i.) Prove that B(M,V ) is complete Hausdor�.

ii.) Show that (3.5) has dense range.

iii.) Conclude (3.6).

Instead, we return to Example 3.1.

Lemma 3.8 Using the identi�cation (3.1), we have

C([0, 1]) ⊗̂ε C([0, 1]) ∼= C
(
[0, 1]× [0, 1]

)
as locally convex spaces.

Proof: It su�ces to prove that the injective tensor product topology translates to the
topology of uniform convergence on [0, 1]× [0, 1] through the identi�cation (3.1). Let

F =
∑
k

fk ⊗ gk ∈ C([0, 1])⊗ C([0, 1]).

As C([0, 1]) ⊆ B([0, 1]) is a subspace, we may repeat our computation from Example 3.6
to obtain (

∥ · ∥∞ ⊗ε ∥ · ∥∞
)
(F ) = sup

x∈[0,1]

∥∥F (x, · )
∥∥
∞ = sup

x,y∈[0,1]

∣∣F (x, y)
∣∣.

Thus (3.1) is an embedding. We have already argued within Example 3.1 that its image
is dense by virtue of the Stone-Weierstraÿ Theorem. □

Exercise 3.9 i.) Generalize Lemma 3.8 to C(U) for open sets U ⊆ Rn.

ii.) Extend the statement further to smooth functions C∞(U) for open sets U ⊆ Rn.

iii.) Globalize the assertion to C∞(U) for open sets U ⊆ M of a smooth manifold M .

It is convenient to study the abstract properties of injective and projective tensor products
in tandem, so we proceed with yet another de�nition.

De�nition 3.10 (Projective Tensor Products) Let V andW be locally convex spaces.

i.) For q ∈ cs(V ) and p ∈ cs(W ), we de�ne their projective tensor product as

(
q⊗π p

)
(x) := inf

{∑
k

q(vk) · p(wk) : x =
∑
k

vk ⊗ wk

}
. (3.7)

ii.) The projective tensor product topology on V ⊗ W is generated by the seminorms
q⊗π p, where we vary q ∈ cs(V ) and p ∈ cs(W ). We write V ⊗πW for the resulting
locally convex space.

As the possible decompositions of a linear combination x+ λy ∈ V ⊗ W are in bijection
with the decompositions of x and y individually, we get that (3.7) indeed constitute
seminorms.
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Exercise 3.11 Let V and W be locally convex spaces and q ∈ cs(V ) and p ∈ cs(W ).
Prove that (3.2) and (3.7) constitute seminorms on V ⊗ W .

Again, it su�ces to use de�ning systems of seminorms and the resulting system is �ltrating.
The main reason to study injective and projective tensor products simultaneously is that
the latter is always larger than the former.

Lemma 3.12 (⊗π vs. ⊗ε, [16, Cor. of Prop. 43.4]) Let V and W be locally convex
spaces. Then the identity mapping

V ⊗π W −→ V ⊗ε W

is continuous. More precisely, if p ∈ cs(V ) and q ∈ cs(W ), then

p⊗ε q ≤ p⊗π q. (3.8)

Proof: Let x ∈ V ⊗ W and consider a �nite decomposition

x =
∑
k

vk ⊗ wk

into factorizing tensors as well as v′ ∈ B^p and w′ ∈ B^q . Then∣∣(v′ ⊗ w′)(x)∣∣ ≤ ∑
k

∣∣v′(vk) · w′(wk)
∣∣ ≤ ∑

k

p(vk) · q(wk).

Note that the left-hand side is independent of the chosen decomposition, whereas the
right-hand side does not depend on the choice of v′ and w′. Thus, taking the in�mum
over all decompositions of x and the supremum over all v′ and w′ in the respective polars
proves the continuity estimate (3.8). □

Due to the supremum within (3.2) and in�mum in (3.7), it is typically rather cumbersome
to compute projective and injective tensor products explicitly. The triangle inequality
combined with the following Lemma provides a simple yet powerful estimate from above.

Lemma 3.13 Let V and W be locally convex spaces. Then(
p⊗ε q

)
(v ⊗ w) = p(v) · q(w) =

(
p⊗π q

)
(v ⊗ w) (3.9)

for all p ∈ cs(V ), q ∈ cs(W ), v ∈ V and w ∈ W .

That is to say, projective and injective tensor products factorize on factorizing tensors.
The proof is based on the Hahn-Banach Theorem and showcases the interplay between
both concepts.

Proof (Of Lemma 3.13): Let p ∈ cs(V ), q ∈ cs(W ), v ∈ V and w ∈ W . By (3.7), we
have (

p⊗π q
)
(v ⊗ w) ≤ p(v) · q(w)

as v⊗ w already comes with a decomposition into factorizing tensors out of the box. For
the converse inequality, we consider the linear functionals

v′ : span v −→ C, v′(λ · v) := λ · p(v)
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w′ : spanw −→ C, w′(λ · w) := λ · q(w),

which ful�l |v′| ≤ p and |w′| ≤ q by construction. Invoking the Hahn-Banach Theorem ??,
we may thus extend both continuously to all of V and W ′ while preserving the continuity
estimates. That is to say, v′ ∈ V ′ and w′ ∈ W ′ get to partake in the supremum within (3.2),
which yields the estimate(

p⊗ε q
)
(v ⊗ w) ≥

∣∣∣(v′ ⊗ w′)(v ⊗ w)
∣∣∣ = ∣∣v′(v) · w′(w)

∣∣ = p(v) · q(w).

Putting everything together and using (3.8), we arrive at

p(v) · q(w) ≥
(
p⊗π q

)
(v ⊗ w) ≥

(
p⊗ε q

)
(v ⊗ w) ≥ p(v) · q(w),

which is (3.9). □

Viewing (3.9) as a continuity estimate, the following is immediate.

Corollary 3.14 Let V and W be locally convex spaces. Then

⊗ε : V ×W −→ V ⊗ε W and ⊗π : V ×W −→ V ⊗π W

are continuous bilinear mappings.

Another natural question is whether tensor products of norms are again norms. In view
of the in�mum within (3.7), this is not completely obvious if done directly. That being
said, (3.8) ensures that it su�ces to provide a lower bound for the injective tensor prod-
uct (3.2). Here, the supremum in the de�nition comes to our aid much like in the proof
of Lemma 3.13. This is a common theme. More generally, this question may be recast
as the inheritance of the Hausdor� property upon taking tensor products. The precise
statement is the following.

Proposition 3.15 (Hausdor� Property) Let V and W be locally convex spaces.

i.) If q ∈ cs(V ) and p ∈ cs(W ) are norms, then so are q⊗ε p and q⊗π p.

ii.) The tensor products V ⊗ε W and V ⊗π W are Hausdor� if V and W are. The
converse holds whenever V ̸= {0} ̸= W .

Proof: We begin with the second statement and assume �rst that V and W are Haus-
dor�. Let x =

∑N
k=1 vk ⊗ wk ∈ V ⊗ W . Without loss of generality, we may assume

v1 /∈ span{v2, . . . , vN};

otherwise we write v1 as a linear combination of the remaining vectors and simplify back
to multiples of v2, . . . , vN . Relabeling and repeating the process then terminates after
�nitely many steps, achieving the desired condition. By assumption, we �nd q ∈ cs(V )
with q(v1) > 0 and p ∈ cs(W ) with p(w1) > 0. Similar to before, we consider the linear
functionals

v′ : span{v1, . . . , vN} −→ C, v′
( N∑

k=1

λkvk

)
:= λ · q(v1)
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w′ : spanw1 −→ C, w′(λ · w1) := λ · p(w1).

Again, |v′| ≤ q and |w′| ≤ p, and we use the Hahn-Banach Theorem ?? to continuously
extend both to V andW , respectively, while preserving the continuity estimates. Together
with (3.8), we arrive at

(
q⊗π p

)
(x) ≥

(
q⊗ε p

)
(x) ≥

∣∣(v′ ⊗ w′)(x)
∣∣ = ∣∣∣∣ N∑

k=1

v′(vk)︸ ︷︷ ︸
=δk,1·q(v1)

w′(wk)

∣∣∣∣ = q(v1) · p(w1) > 0.

Varying x establishes the Hausdor� property of V ⊗π W and V ⊗εW . Assume conversely
that neither V , nor W are the zero space and V ⊗π W or V ⊗ε W is Hausdor�. By
choosing some v ∈ V \ {0}, we get a linear injection

ιv : W −→ V ⊗ W, ιv(w) := v ⊗ w.

By virtue of Lemma 3.13, it even constitutes a topological embedding for either topology.
That is to say, it is a homeomorphism onto its image. Hence, W inherits the Hausdor�
property from the ambient space. The argument for V is analogous. This completes the
proof of ii.) and we turn towards i.). To this end, assume that q ∈ cs(V ) and p ∈ cs(W )
are norms. Then we may regard (V, q) and (W, p) as normed spaces, whose locally convex
topology is generated by{

r · q: r > 0
}

resp.
{
r · p: r > 0

}
.

As tensor products of Hausdor� spaces are Hausdor� by ii.), we get that the de�ning
system {

(r1 · q)⊗π/ε (r2 · p) : r1, r2 > 0
}
=

{
r · (q⊗π/ε p) : r > 0

}
has no joint kernel. But this means

q⊗π/ε p

is a norm itself, completing the proof. □

It is instructive to make the argument we have just used precise.

Exercise 3.16 Let (V, ∥ · ∥) be a normed space. Prove that the system of seminorms{
r · ∥ · ∥ : r > 0

}
is �ltrating and that the associated locally convex topology reproduces the norm-topology.

Another pleasant property of both �avours of tensor products is that naively gluing con-
tinuous linear mappings preserves continuity. We begin with the injective version.

Lemma 3.17 Let ϕj : Vj −→ Wj be continuous linear mappings between locally convex
spaces for j = 1, 2. Then the mapping

ϕ1 ⊗ ϕ2 : V1 ⊗ε V2 −→ W1 ⊗ε W2

de�ned by linear extension of(
ϕ1 ⊗ ϕ2

)
(v1 ⊗ v2) := ϕ1(v1)⊗ ϕ2(v2)

is continuous.
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Proof: Let p1 ∈ cs(W1) and p2 ∈ cs(W2). By continuity of ϕ1 and ϕ2, there exist
corresponding seminorms q1 ∈ cs(V1) and q2 ∈ cs(V2) such that

ϕ∗
1p1 = p1 ◦ ϕ1 ≤ q1 and ϕ∗

2p2 = p2 ◦ ϕ2 ≤ q2.

Consequently, we have

B^ϕ∗p1 ⊆ B^q1 and B^ϕ∗p2 ⊆ B^q2 .

Writing ϕ := ϕ1 ⊗ ϕ2, this implies(
p1 ⊗ε p2

)
(ϕ(x)) = sup

w′
1∈B^p1

sup
w′

2∈B^p2

∣∣∣(w′
1 ⊗ w′

2

)
(ϕ(x))

∣∣∣
= sup

w′
1∈B^p1

sup
w′

2∈B^p2

∣∣∣(ϕ∗
1w

′
1 ⊗ ϕ∗

2w
′
2

)
(x)

∣∣∣
≤ sup

v′1∈B^q1

sup
v′2∈B^q2

∣∣(v′1 ⊗ v′2
)
(x)

∣∣
≤

(
q1 ⊗ε q2

)
(x),

which completes the proof. □

Exercise 3.18 Prove that taking injective and projective tensor products is associative
up to the usual linear algebraic identi�cations. That is to say, show that

p1 ⊗π/ε

(
p2 ⊗π/ε p3

)
=

(
p1 ⊗π/ε p2

)
⊗π/ε p3

as mappings on the triple tensor product V1 ⊗ V2 ⊗ V3 of locally convex spaces V1, V2, V3

and pj ∈ cs(Vj) for j = 1, 2, 3. Conclude that the resulting locally convex spaces are
canonically linearly homeomorphic.

Recall the universal property of the algebraic tensor product: Given a bilinear mapping

ϕ : V ×W −→ X,

there exists a unique linear mapping

Φ: V ⊗ W −→ X such that Φ ◦ ⊗ = ϕ.

Our Corollary 3.14 ensures that the continuity of Φ implies the continuity of ϕ. The natu-
ral question is thus whether the converse also holds. This turns out to be a distinguishing
property of the projective tensor product, which we could have used as the de�nition
instead. This statement is known as the in�mum argument and an ubiquitous tool within
strict deformation quantization as discussed in the survey [18]. Using the associativity
from Exercise 3.18, the general statement is the following.

Proposition 3.19 (In�mum argument, [16, Prop. 43.4]) Let V1, . . . , Vn,W be locally
convex spaces and

ϕ : V1 × · · · × Vn −→ W

be n-linear with corresponding linear map

Φ: V1 ⊗ · · · ⊗ Vn −→ W.
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Endow V1×· · ·×Vn with the Cartesian product topology and V1⊗· · ·⊗Vn with the projective
tensor product topology. Then ϕ is continuous if and only if Φ is. More precisely, if for a
continuous seminorm q ∈ cs(W ) there are p1 ∈ cs(V1), . . ., pn ∈ cs(Vn) such that

q
(
ϕ(v1, . . . , vn)

)
≤ p1(v1) · · · pn(vn) for all v1 ∈ V1, . . . , vn ∈ Vn, (3.10)

then
q
(
Φ(v)

)
≤

(
p1 ⊗ · · · ⊗ pn

)
(v) for all v ∈ V1 ⊗ · · · ⊗ Vn, (3.11)

and vice versa.

Proof: It su�ces to treat the case n = 2. As already noted, we may view Lemma 3.13
as the continuity estimate(

p1 ⊗π p2

)
(v1 ⊗ v2) ≤ p1(v1) · p2(v2).

Hence, (3.10) implies (3.11) by virtue of Φ ◦ ⊗π = ϕ. Assume conversely (3.11) and let

x =
∑
k

vk ⊗ wk ∈ V1 ⊗ V2.

Then we have

q
(
Φ(x)

)
≤

∑
k

q
(
Φ(vk ⊗ wk)

)
=

∑
k

q
(
ϕ(vk, wk)

)
≤

∑
k

p1(vk) · p2(wk).

Taking the in�mum over all decompositions of x into factorizing tensors thus yields

q
(
Φ(x)

)
≤

(
p1 ⊗π p2

)
(x).

Varying x ∈ V1 ⊗ V2 thus establishes (3.11). □

The upshot is that it su�ces to prove continuity estimates for multilinear mappings on
factorizing tensors. As a simple application, we may prove the analogue of Lemma 3.17
for projective tensor products.

Corollary 3.20 Let ϕj : Vj −→ Wj be continuous linear mappings between locally convex
spaces for j = 1, 2. Then the mapping

ϕ1 ⊗ ϕ2 : V1 ⊗π V2 −→ W1 ⊗π W2

de�ned by linear extension of(
ϕ1 ⊗ ϕ2

)
(v1 ⊗ v2) := ϕ1(v1)⊗ ϕ2(v2)

is continuous.

Proof: By Proposition 3.19 and Corollary 3.14, it su�ces to prove the continuity of the
bilinear mapping

ϕ : V1 × V2 −→ W1 ×W2, ϕ(v1, v2) :=
(
ϕ(v1), ϕ(v2)

)
.

By continuity of ϕ1 and ϕ2 and the de�nition of the product topology, this is obvious. □
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Example 3.21 Let V be a complete Hausdor� locally convex space. A sequence of
vectors γ := (vn) ⊆ V is called absolutely summable if

q(γ) :=
∞∑
n=0

q(vn) < ∞ (3.12)

for all q ∈ cs(V ). We write ℓ1[V ] for the corresponding locally convex space. The usual
ℓ1-space then arises for V = (C, | · |), viewed as a locally convex space. We claim that

ℓ1⊗̂πV ∼= ℓ1[V ] (3.13)

as locally convex spaces. To see this, we consider the mapping

ϕ : ℓ1⊗̂πV −→ ℓ1[V ]

de�ned by linear extension of (
ϕ(a⊗ v)

)
n
:= an · v.

By virtue of

q
(
ϕ(a⊗ v)

)
=

∞∑
n=0

q
(
an · v

)
=

∞∑
n=0

|an| · q(v) = ∥a∥1 · q(v) (3.14)

for all a ∈ ℓ1 and v ∈ V and Proposition 3.19, this is indeed well-de�ned on all of the
completion. Moreover, the resulting mapping is clearly injective on ℓ1 ⊗π V and thus the
same is true for its unique continuous linear extension. Let now γ ∈ ℓ1[V ]. We check that
the series

Γ :=
∞∑
n=0

en ⊗ γn

with the usual unit sequences en ∈ ℓ1 given by en(k) := δn,k converges within ℓ1⊗̂πV .
Indeed, by Lemma 3.13 we have

∞∑
n=0

(
∥ · ∥1 ⊗π q

)
(en ⊗ γn) =

∞∑
n=0

∥en∥1 · q
(
γn
)
=

∞∑
n=0

q
(
γn
)
= q(γ) < ∞

for all q ∈ cs(V ). By completeness, we know that absolute convergence implies conver-
gence, and thus Γ ∈ ℓ1⊗̂πV is well-de�ned. By continuity of ϕ and the completeness of V ,
this implies the convergence of

ϕ(Γ) =
∞∑
n=0

ϕ
(
en ⊗ γn

)
=

∞∑
n=0

en · γn = γ.

Hence, ϕ is also surjective and thus bijective. Finally, reading (3.14) backwards asserts
the continuity of the inverse mapping. Note that passing to the completion was essential.
The image

ϕ
(
ℓ1 ⊗π V

)
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only consists of sequences living within �nite dimensional subspaces of V . As a particular
consequence of the equality (3.14) combined with Proposition 3.19, we get that

ℓ1⊗̂πℓ
1[J ] ∼= ℓ1[N0 × J ]

for any index set J . More generally, one may use the same methods to prove

ℓ1[I]⊗̂πℓ
1[J ] ∼= ℓ1[I × J ].

Finally, we note that there exist measure theoretic generalizations, which can be found
within [6, Sec. 16.7]. It should be noted that this particularly nice compatibility is par-
ticular to ℓ1 and fails e.g. for the space of zero sequences, see [5, Ex. 2.6.2] for further
discussion. Another such example is the Hilbert space ℓ2, where one should use the Hilbert
tensor product instead.

4 Nuclearity

The de-facto source regarding nuclearity remains [12], even though some of the treatment
has become dated. A more modern point of view can be found in the lecture notes [17].

In Lemma 3.12, we have seen that there is a canonical continuous linear mapping

V ⊗π W −→ V ⊗ε W

between the projective and injective tensor products of two locally convex spaces V andW .
It turns out that requiring this mapping to even constitute a homeomorphism has far
reaching consequences. This is the notion of nuclearity.

De�nition 4.1 (Nuclearity) We call a locally convex space V nuclear if the canonical
mapping

V ⊗π W −→ V ⊗ε W

constitutes a homeomorphism for all locally convex spaces W .

In the sequel, we may thus suppress the index for the tensor product, whenever we work
with nuclear spaces.

From the De�nition, it is clear that we need some better criteria to check nuclearity.

Proposition 4.2 ...

There are many more equivalent, yet di�erent looking and thus situationally useful char-
acterizations of nuclearity. Our next goal is to generalize the Riemann rearrangement
Theorem to nuclear spaces. We have already met the space of absolutely summable se-
quences ℓ1[V ] of a complete Hausdor� space within Example 3.21. We managed to identify
it as the completion of the projective tensor product of ℓ1 and V within (3.13). We prove
the analogous result holds for injective tensor products and unconditionally convergent
series.
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Example 4.3 (Uncoditional Summability I) Let V be a complete Hausdor� locally
convex space and (vn)n ⊆ V a sequence. Recall that the corresponding series

∞∑
n=0

vn

is called unconditionally convergent to v ∈ V if

∞∑
n=0

vσ(n) = v

for all bijections σ : N0 −→ N0. That is to say, one may rearrange the series without
spoiling convergence or altering the limit. We write ℓ1(V ) for the resulting vector space.
At this point, it is not completely clear how one should topologize ℓ1(V ). Note �rst that
the canonical mapping

ϕ : ℓ1 ⊗ V −→ ℓ1(V ),
(
ϕ(γ ⊗ v)

)
n
:= γn · v (4.1)

constitutes a linear injection. Indeed, that this sequence is indeed unconditionally summable
by the usual Riemann Rearrangement Theorem, as every tensor is a �nite linear combina-
tion of factorizing tensors, and thus the resulting limit is taken within a �nite dimensional
subspace of V . Invoking once again (3.3), we compute(

∥ · ∥1 ⊗ε q
)
(x) = sup

|v′|≤q

∥∥ιV (x)v′∥∥1

= sup
|v′|≤q

∥∥∥∥∑
k

v′(vk) · γk
∥∥∥∥
1

= sup
|v′|≤q

∞∑
n=0

∣∣∣∣∑
k

v′(vk) · γk(n)
∣∣∣∣

= sup
|v′|≤q

∞∑
n=0

∣∣∣∣v′(∑
k

v · γk(n)
)∣∣∣∣

= sup
|v′|≤q

∞∑
n=0

∣∣v′(xn)
∣∣

for q ∈ cs(V ) and x =
∑

k γk ⊗ vk ∈ ℓ1 ⊗ V , where we write

xn :=
∑
k

(γk)(n) · vk ∈ V for all n ∈ N0.

Hence, a reasonable choice of seminorms turns out to be

qw
(
(vn)n

)
:= sup

|v′|≤q

∞∑
n=0

∣∣v′(vn)∣∣, (4.2)

where we vary q ∈ cs(V ). The index w alludes to weak convergence. It is not completely
obvious that the suprema within (4.2) are �nite. To see this, we take a detour to note
the following characterization of unconditional convergence.
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Lemma 4.4 Let V be a Hausdor� locally convex space and (vn)n ⊆ V a sequence. Then
the series

∑
n∈N0

vn converges unconditionally to v ∈ V i� for every ε > 0 and q ∈ cs(V )
there exists a �nite set F0 ⊆ N0 such that

q

(
v −

∑
n∈F

vn

)
≤ ε (4.3)

for all �nite sets F0 ⊆ F ⊆ N0.

Proof: Assume �rst that the condition from the Lemma holds and let σ : N0 −→ N0

be a bijection. Moreover, let ε > 0 and q ∈ cs(V ). By assumption, we �nd some �nite
set F0 ⊆ N0 such that (4.3) holds for all �nite sets F0 ⊆ F ⊆ N0. As F0 is �nite, there
exists some N0 ∈ N0 such that σ(n) ≥ maxF0 for all n ≥ N . That is to say by bijectivity
of σ, we have

F0 ⊆ σ
(
{1, . . . , N0}

)
,

which implies

q

(
v −

N∑
n=0

vσ(n)

)
≤ ε

for all N ≥ N0. Varying ε and q establishes the convergence of
∑∞

n=0 vσ(n) towards v.

Assume, conversely, that the condition stated in the Lemma fails. Then there exists some
constant ε > 0 and q ∈ cs(V ) such that for every �nite set F0 ⊆ N0, there exists another
�nite set F0 ⊆ F ⊆ N0 such that

q

(
v −

∑
n∈F

vn

)
> ε.

We use this to de�ne a bijection σ : N0 −→ N0 as follows: �rst, we set σ(0) := 0. If now
σ(0), . . . , σ(n) are already de�ned for some n ∈ N0, then take F0 := {σ(0), . . . , σ(n)} with
corresponding �nite set F0 ⊆ F ⊆ N0. If F = F0, then we set

σ(n+ 1) := min
(
N0 \ F0

)
.

Otherwise, we de�ne

σ(n+ 1), σ(n+ 2), . . . , σ(n+ |F \ F0|)

as the elements of F \F0 in ascending order. Note that the �nite sets F within each step
contain all the preceding ones. Inductively, this de�nes a bijection σ. We check that the
accordingly rearranged series does not converge to v. To this end, let N0 ∈ N0. Then, by
construction of σ, there exists some N1 ≥ N0 such that

F (N0) =
{
σ(0), . . . , σ(N1)

}
.

This implies the desired inequality

q

(
v −

N1∑
n=0

vσ(n)

)
> ε.
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Example 4.5 (Uncoditional Summability II) Let V be a complete Hausdor� locally
convex space. We return to the �niteness of (4.2) for unconditionally summable sequences
(vn)n ⊆ V with limit v. Fix v′ ∈ V . Invoking Lemma 4.4, we �nd some �nite set F0 ⊆ N0

such that ∣∣∣∣v′(v)−∑
n∈F

v′(vn)

∣∣∣∣ = ∣∣∣∣v′(v −∑
n∈F

vn

)∣∣∣∣ ≤ 1

for all �nite sets F0 ⊆ F ⊆ N0, where we use that |v′| ∈ cs(V ) by continuity of v′.
Consequently, ∑

n∈J

∣∣v′(vn)∣∣ ≤ 1 +
∣∣v′(v)∣∣

for all �nite sets F0 ⊆ F ⊆ N0. Hence, the series

∞∑
n=0

v′(vn)

converges absolutely within C, as the corresponding sequence of partial sums is bounded
from above and monotonically increasing. Hence, each individual term within the supre-
mum (4.2) is �nite. The remainder of the proof uses technology beyond the scope of these
notes. For the sake of completeness, we give the argument regardless. Consider the sets

Φr :=
{
v′ ∈ V ′ :

∞∑
n=0

∣∣v′(vn)∣∣ ≤ r
}
=

⋂
J∈F

{
v′ ∈ V ′ :

∑
n∈J

∣∣v′(vn)∣∣ ≤ r
}

(4.4)

for all r > 0 and where F denotes the collection of all �nite subsets of N0. By what we
have just shown, we know ⋃

r>0

Φr =
⋃
r>0

r · Φ1 = V ′.

Moreover, Φr is absolutely convex and closed with respect to the topology of pointwise
convergence on V ′. Indeed, the closedness of each of the members of the intersection
in (4.4) follows from the �niteness of J and thus Φr is closed as an intersection of closed
sets. We have shown that each Φr, in particular Φ1, constitutes a barrel within V ′. Hence,
pulling back the intersection Φ1 ∩ B^q to functionals on the local Banach space

Vq := ̂V/ ker q

with the obvious quotient norm [q] yields a barrel [Φ] ⊆ V ′
q. As a Banach space, Vq is

barrelled and thus [Φ] constitutes a zero neighbourhood and is thus contained in some
su�ciently large norm-ball. That is to say, there exists r > 0 such that

∞∑
n=0

∣∣v′(vn)∣∣ = ∞∑
n=0

∣∣[v]′([vn])∣∣ ≤ r for all v′ ∈ B^q ,

where we have used that ker q ⊆ ker v′. Hence, (4.2) is indeed well-de�ned. In passing,
we note that our argument did not rely on the unconditional convergence and may be
readily generalized to arbitrary summable sequences. This gives rise to yet another com-
plete space of sequences on V , which constitutes yet another contender for which space
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the symbol ℓ1(V ) should really denote. Within these notes, it shall unnamed and thus
shrouded in mystery. Our next goal is to show

ℓ1⊗̂εV ∼= ℓ1(V ), (4.5)

where we once again use the assumed completeness of V . As in the projective situation,
we establish the density of the inclusion (4.1). Let (vn)n ∈ ℓ1(V ) with v :=

∑∞
n=0 vn and

consider the sequence (γm) given by

γm :=
m∑

n=0

en ⊗ vn ∈ ℓ1 ⊗ε V.

Given ε > 0 and q, we invoke Lemma 4.4 to �nd a �nite set F0 ⊆ N0 such that

q

(
v −

∑
n∈F

vn

)
≤ ε

for all �nite sets F0 ⊆ F ⊆ N0. Obversely, this means that

q

(∑
n∈F

vn

)
≤ q

(
v −

∑
n∈F0

vn

)
+ q

(
v −

∑
n∈F∪F0

vn

)
≤ 2ε

for any �nite set F ⊆ N0 with F ∩ F0 = ∅. In particular, we get∣∣∣∣v′(∑
n∈F

vn

)∣∣∣∣ = ∣∣∣∣∑
n∈F

v′(vn)

∣∣∣∣ ≤ 2ε

for any �nite set F ⊆ N0 with F ∩ F0 = ∅ and v′ ∈ V ′ with |v′| ≤ q. Covering N0 with
the sets

N
±
± :=

{
n ∈ N0 : ± Re v′(vn) ≥ 0,± Im v′(vn) ≥ 0

}
leads to the estimate∑

n∈F

∣∣v′(vn)∣∣ ≤ ∑
n∈F

∣∣Re v′(vn)∣∣+∑
n∈F

∣∣Im v′(vn)
∣∣

=
∑

n∈F∩N+
+

∣∣Re v′(vn)∣∣+ ∑
n∈F∩N+

−

∣∣Re v′(vn)∣∣
+

∑
n∈F∩N+

+

∣∣Im v′(vn)
∣∣+ ∑

n∈F∩N−
+

∣∣Im v′(vn)
∣∣

≤ 8ε

for the same data and where we have used the triangle inequality in the plane to infer

|z| = |Re z + Im z| ≤ |Re z|+ |Im z| for all z ∈ C.

Varying the data, we get
sup
|v|′≤q

∑
n>N

∣∣v′(vn)∣∣ ≤ 8ε.
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By construction, we have on the other hand

vn − γm(n) =

{
0 for n = 0, . . . ,m,

vn for n > m,

and thus

qw
(
(vn)n − γm

)
= sup

|v′|≤q

∞∑
n=0

∣∣∣v′(vn − γm(n)
)∣∣∣ = sup

|v′|≤q

∞∑
n=m+1

∣∣v′(vn)∣∣ ≤ 8ε

for all m ≥ N . This proves the desired convergence γm → (vn)n.

Once again, it remains to establish the completeness of the ambient space to complete
the argument.

Exercise 4.6 Let V be a complete Hausdor� locally convex space. Prove that the
space ℓ1(V ) of unconditionally summable sequences is complete Hausdor�.

In passing, we note the elementary estimate

qw
(
(vn)n

)
= sup

|v′|≤q

∞∑
n=0

∣∣v′(vn)∣∣ ≤ ∞∑
n=0

q(vn) = q
(
(vn)n

)
for all (vn)n ∈ ℓ1[V ],

with the seminorms for ℓ1[V ] from (3.12). In view of (3.13) and (4.5) this is nothing but
a particular case of (3.8). We may encode this as a canonical linear injection

ℓ1[V ] −→ ℓ1(V ).

Putting everything together, we arrive at the following Theorem.

Theorem 4.7 (Summability in Nuclear spaces) Let V be a complete Hausdor� nu-
clear locally convex space. Then ℓ1[V ] ∼= ℓ1(V ). That is to say, any series within V
converges absolutely i� it converges unconditionally.

Proof: Combining the very de�nition of nuclearity with (3.13) and (4.5) yields

ℓ1[V ] ∼= ℓ1⊗̂πV ∼= ℓ1⊗̂εV ∼= ℓ1(V ).

The additional statement follows from unwrapping the canonical homeomorphisms. □

This constitutes a direct generalization of Riemann's Rearrangement Theorem beyond the
�nite-dimensional situation. Note that the completeness is immaterial and may always be
remedied by passing to the completion of V as a preliminary step. Remarkably, the equal-
ity of unconditional and absolute summability characterizes nuclearity by [?]. However,
this means that in�nite-dimensional normed spaces are never nuclear.

Example 4.8 Consider V := ℓ2 and write en for the usual orthogonal basis with entries
given by en(k) = δn,k for all n, k ∈ N. Then the series

∞∑
n=1

en
n

converges unconditionally, but not absolutely. Hence, ℓ2 is not nuclear by Theorem 4.7.
By virtue of the Riesz-Fischer Theorem, this extends to any in�nite dimensional Hilbert
space. In fact, the same is true for any in�nite dimensional normed space by an application
of the highly non-trivial Dvoretzky-Rogers Theorem [2].
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We proceed with pursuing another remarkable property of nuclear spaces: the existence of
compact sets with non-empty open interior. That is to say, we are going to prove a variant
of Montel's Theorem for nuclear spaces. In passing, we introduce quasicompleteness,
which is a weaker notion of completeness useful in many applications. Recall that every
Cauchy sequence is bounded. The same need not be true about Cauchy nets. It is
instructive to play with this within some examples.

Exercise 4.9 Construct a unbounded Cauchy net. Argue that your net converges within
the completion of your space, yet remains unbounded there.

This leads to the insight that unbounded Cauchy nets might not be the ones we care
about. Accordingly, there is a more appropriate �avour of completeness.

De�nition 4.10 (Quasicompleteness) A locally convex space V is called quasicom-
plete if every bounded Cauchy net converges.

Theorem 4.11 Let V be a nuclear as well as quasicomplete space. Then every bounded
subset B ⊆ V has compact closure.

Proof: This is an elaborate exercise for another day. □
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